
一文了解Transformer全貌(图解Transformer)
Sep 26, 2025 · 网上有关Transformer原理的介绍很多,在本文中我们将尽量模型简化,让普通读者也能轻松理解。 1. Transformer整体结构 在机器翻译中,Transformer可以将一种语言翻译成 …
如何最简单、通俗地理解Transformer? - 知乎
Transformer最开始应用于NLP领域的机器翻译任务,但是它的通用性很好,除了NLP领域的其他任务,经过变体,还可以用于视觉领域,如ViT(Vision Transformer)。 这些特点 …
如何从浅入深理解 Transformer? - 知乎
Transformer升级之路:1、Sinusoidal位置编码追根溯源 Transformer升级之路:2、博采众长的旋转式位置编码 猛猿:Transformer学习笔记一:Positional Encoding(位置编码) 解密旋转位 …
深度学习中“Transformer”怎么翻译为中文? - 知乎
Transformer 个人觉得不翻译为好。 Transformer按在机器翻译中原意可以翻译为变形器或变换器。但随着Transformer的普及,它已经成为一类以 自注意力 为主要部件的特定模型,其原本在机 …
Transformer 和 cnn 是两条差异巨大的路径吗? - 知乎
Transformer 和 CNN,真的是两条差异巨大的路径吗? 两者设计逻辑不一样,但目标一致——让机器看懂东西 CNN 是图像领域的老炮,靠“局部感知+权值共享”吃饭。 简单说,它专注于看图 …
Transformer模型怎么用于regression的问题? - 知乎
回归问题概述 Transformer模型基础 回归问题中的Transformer架构调整 应用案例 优化与技巧 挑战与改进 1. 回归问题概述 回归问题是监督学习中的一种任务,目标是预测一个连续值。这类问 …
Transformer两大变种:GPT和BERT的差别(易懂版)-2更
4 days ago · Transformer是GPT和BERT的前身。谷歌和OpenAI在自然语言处理技术上的优化,都是基于这个模型。 更多关于的Transformer可以看文章: ChatGPT与Transformer(无公式 …
挑战 Transformer:全新架构 Mamba 详解
Sep 23, 2025 · 而就在最近,一名为 Mamba 的架构似乎打破了这一局面。 与类似规模的 Transformer 相比, Mamba 具有 5 倍的吞吐量, 而且 Mamba-3B 的效果与两倍于其规模的 …
训练最基础的transformer模型用多大的gpu就行? - 知乎
给一个粗略的估计,12层编码解码结构(本质24层)默认参数的大概300+M,激活值和梯度差不多两倍700+M,优化器比如用 adam 需要存状态再300+M,然后batchsize16 序列长度512 的潜 …
transformer主要用在哪些领域和哪些研究方向? - 知乎
Transformer可以广泛应用于时间序列领域。 Transformer是一种基于自注意力机制的深度神经网络结构,最初用于自然语言处理中的文本翻译任务,由Google的研究人员于2017年首次提出。